펩타이드 활성 의약품 성분의 연속 흐름 생산 장치 개발

Daisuke Kubo *1
Yusuke Hattori *1

Yuma Otake *1
Jun-ichi Ogawa *1

Kyohei Adachi *1

최근 몇 년 동안, 제약 업계 트렌드는 배치 생산를 연속 생산 (CM, Continuous Manufacturing)로 전환하는 것이었습니다. 연속 생산은 수요와 공급에 따른 제조량을 조정하기 쉽고, 에너지 사용량이 적으며 대규모 장비가 필요없어 공간을 절약할 수 있는 등, 다양한 이점을 가지고 있습니다. 지금까지는 배치 생산이 제약 업계의 주류였지만, 2022년 연속 생산에 관한 ICH 가이드라인 (ICH Q13)이 채택됨에 따라 머지않은 미래에 연속 생산이 의약품 제조에 점점 더 많이 적용될 것입니다. 이 보고서는 펩타이드 활성 의약품 성분에 대한 연속 흐름 생산 장치의 개발을 소개합니다. 합성 공정뿐만 아니라 분리와 같은 후처리 공정도 고려되었으며, 이를 기반으로 시제품 장비가 제작되었습니다. 이 장비는 개념 증명을(Proof of Concept) 위해 10개의 아미노산으로 구성된 펩타이드 합성에 사용되었습니다.

소개

약품 제조는 두 가지 주요 생산 방식으로 수행됩니다. 첫번째는 배치 생산(Batch Production)으로, 고정된 양의 제품을 개별 공정을 통해 제조하는 방식이고, 두번째는 연속 생산(Continuous Manufacturing)으로, 일련의 연결된 공정을 통해 제품을 연속적으로 생산하는 방식입니다(그림 1). 기존의 배치 생산 방식과 비교할 때, 연속 생산은 공정 분석 기술(Process Analytical Technologies, PAT)을 활용한 품질 관리가 용이하고, 수요와 공급에 따라 생산량을 간단히 조정할 수 있으며, 장비를 보다 소형화 할 수 있는 장점이 있습니다. 미국 식품의약국(US Food and Drug Administration, FDA)은 연속 생산을 제약 산업의 현대화를 위한 가장 중요한 도구 중 하나로 장려하고 있으며(1), 이에 따라 최근 몇 년간 연속 생산 도입을 위한 노력이 증가하고 있습니다. 규제 당국 또한 이를 지원하기 위해 논의를 진전시키고 있으며, 의약품국제조화회의(International Council for Harmonisation of Technical Requirements for Pharmaceuticals for

Human Use, ICH)는 2023년 5월 일본에서 공지된 연속공정관련 활성 의약품 성분 및 완제 의약품에 대한 ICH Q13 가이드라인을 발표했습니다⁽²⁾. 일본에서는 연속 공정을 활용한 생산 방식을 적용한 6개의 제품이 승인되었으며⁽³⁾, 앞으로 연속 생산의 의약품 제조 적용이확대될 것으로 기대되고 있습니다.

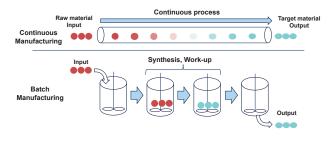
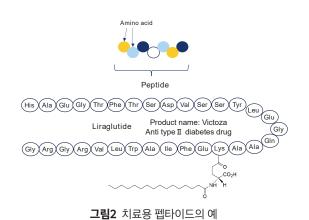


그림1 배치 및 연속 생산

연속 생산에 대한 Yokogawa의 이니셔티브


Yokogawa는 연속 생산 노력의 일환으로, Yokogawa Solution

^{*1} Senior Vice President (CIO), Head of Digital Strategy Headquarters, and Head of DX-Platform Center, Digital Solutions Headquarters

Service에서 진행하는 "iFactory" 개발 프로젝트에 참여하여 오케스트 레이션 시스템을 구축해왔습니다. 이 시스템은 제어 시스템, 제조 실행 시스템(Manufacturing Execution System, MES), 실험실 정보 관리 시스템(Laboratory Information Management System, LIMS), 에너지 관리 시스템(Energy Management System, EMS)으로 구성되어 있습니다⁽⁴⁾. iFactory는 2022년 4월 다카사고 케미컬(Takasago Chemical)의 카케가와(Kakegawa) 공장에서 완공되어 현재 운영 중입니다. 이와 더불어, Yokogawa는 활성 의약품 성분(API) 및 중간체의 연속 생산 기술을 개발하고, 이를 활용한 위탁 개발 및 제조 서비스를 제공하는 파미라(Pharmira Co., Ltd.)와 펩타이드 및 올리고뉴클레오타이드 활성 의약품 성분에 특화된 CDMO(Contract Development and Manufacturing Organization)인 펩티스타 (PeptiStar Co., Ltd.)에 투자했습니다. 이러한 투자를 통해 Yokogawa는 연속 생산 구현을 목표로 하는 다양한 활동에 참여하고 있습니다.

펩타이드 플로우(Flow) 연속 생산 장치 개발 ^{펩타이드 의약품}

펩타이드 의약품은 2~40개의 아미노산으로⁽⁵⁾ 구성된 중분자 의약품 범주에 포함됩니다. 이들은 기존의 저분자 의약품이 타켓팅하기 어려운 약물 표적에 결합할 수 있다는 점과 대량 생산을 위한 화학적 합성이 항체 의약품에 비해 생산 비용을 낮출 수 있다는 점에서 새로운 약물 모달리티(Modality)로 주목받고 있습니다. 펩타이드 중일부는 체내에서 호르몬으로 작용하기 때문에, 펩타이드 의약품 개발은 초기에는 자연(생물) 유래 물질을 기반으로 시작되었습니다. 하지만 최근에는 생물체에서 발견되지 않는 비자연적 아미노산을 포함한 펩타이드 의약품의 개발이 증가하고 있습니다. 다양한 질환 영역에서 개발이 진행 중이며, 현재 전 세계적으로 100개 이상의 펩타이드 의약품이 시장에 출시되어 있습니다. 최근 들어 GLP-1 수용체작용제(GLP-1 receptor agonists)가 펩타이드 의약품 매출의 큰 부분을 차지하고 있으며, 이는 제2형 당뇨병 치료제인 리라글루타이드 (Liraglutide)를 포함하고 있습니다(그림 2).

펩타이드 합성에서는 새로운 아미노산을 반복적인 아미드화 (Amidation)와 탈보호(Deprotection) 과정을 통해 결합시킵니다. 원하지 않는 부반응인 라세미화(Racemization)의 진행을 억제하는 표준 방법은 펩타이드 사슬을 C-말단에서 N-말단 방향으로 연장하는

것입니다. 펩타이드 합성 방법은 크게 두 가지로 분류됩니다. 하나는 합성 과정에서 기질과 시약을 용매에 용해시키는 액상 합성(Liquid-Phase Synthesis)이고, 다른 하나는 C-말단 아미노산의 카복실기 (Carboxyl Group)를 불용성 수지 지지체(Insoluble Resin Support)에 고정하고, C-말단에서 N-말단 방향으로 펩타이드 사슬을 연장하는 고체상 합성(Solid-Phase Synthesis)입니다(그림 3). 고체상 합성에 서는 펩타이드 사슬 연장이 완료되면, 수지(Resin)와 아미노산 측쇄 (Side Chain)의 보호기를 절단하여 최종 목표 화합물을 얻습니다.

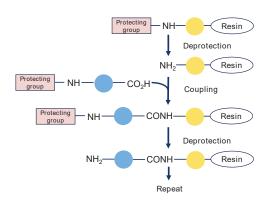


그림3 고체상 펩타이드 합성

개념

1963년 Merrifield 등이 도입한 이래로, 고체상 펩타이드 합 성(Solid-Phase Peptide Synthesis, SPPS)은 다양한 개선을 거쳐 현 재 펩타이드 합성의 주요 방법으로 널리 인정받고 있습니다. 상업 적으로 사용 가능한 SPPS 장비는 많지만, 이 방식은 대량의 용매 와 과량의 아미노산 및 커플링 시약을 요구하기 때문에 녹색 화학 (Green Chemistry)의 관점에서 상당한 도전 과제를 제기합니다. 미 국화학회(American Chemical Society, ACS) 녹색 화학 연구소 제 약 라운드테이블은 환경 친화적인 펩타이드 합성 방법 개발을 중요 한 미충족 과제로 정의하며, 이 분야에서의 기술 혁신을 장려하고 있 습니다(7). 이에 대한 해결책으로 주목받는 방법 중 하나는 태그 보 조 액상 합성법(Tag-Assisted Liquid-Phase Method)입니다. 이 방 법은 고체상 합성에서 사용되는 불용성 수지 대신 소수성 방향족 화 합물(Hydrophobic Aromatic Compounds)을 사용하며, 균질 반응 (Homogeneous Reaction)을 통해 기존의 저분자 배치 합성과 유사 한 방식으로 펩타이드를 합성할 수 있게 합니다®. 앞서 언급했듯이, Yokogawa는 에너지 절감, 실시간 모니터링 적응성, 장비 소형화 관 점에서 연속 흐름 생산(Flow Continuous Manufacturing, Flow CM) 에 집중하고 있습니다⁽⁹⁾. Yokogawa는 태그 보조 액상 합성법을 기반 으로 한 연속 흐름 합성 시스템을 구축하고 이를 제어 시스템과 통합 함으로써, 녹색 화학을 촉진하고 더욱 발전된 펩타이드 의약품 생산 에 기여할 수 있다고 믿습니다.

플로우(Flow) 아미드화 조사

우리는 태그 보조 액상 합성법으로 세키수이 메디칼(Sekisui Medical Co., Ltd.)에서 개발한 STag-PS(Silicon Tag-Phase Separation) 방법을 사용했습니다. 이 방법은 소수성 긴 사슬 알킬-트리메틸실릴(Alkyl-Trimethylsilyl) 그룹을 포함한 페닐 그룹을 태그로 활용합니다⁽¹⁰⁾(그림 4). 이전에 연구 경험이 있었던 혼합 탄산무수물 방법(Mixed Carbonic Anhydride Method)⁽¹¹⁾을 기반으로 STag

펩타이드 합성

를 활용한 연속합성에 대해 연구하기 시작했습니다. 그림 5에 나타난 바와 같이, Fmoc 아미노산(3)과 아이소뷰틸 클로로포름산(isobutyl chloroformate, 2)을 사용하여 혼합 탄산무수물을 형성한 후, STag 가 C-말단에 결합된 화합물(1)과 60℃에서 반응시켰습니다. 시작물질은 30초 반응 시간 내에 거의 완전히 소모되었으며, 목표 화합물(4)을 얻을 수 있었습니다. 그러나 트라이펩타이드(tripeptide)보다 긴 펩타이드를 합성할 때, 활성화제로 사용된 클로로포름산 에스터(chloroformate ester)로부터 파생된 부산물 형성으로 인해 순도가명확히 감소했습니다. 이에 따라 응축제(condensing agent)를 사용하는 방식으로 전환했습니다. 우선적으로, 높은 반응성과 낮은 라세미화(racemization) 가능성을 가진 우로늄(uronium) 기반 응축제를고려했습니다. ethyl 2-cyano-2(-(Dimethyliminio)(Morpholino) Methyloxyimino) acetate hexafluorophosphate(COMU)를 응축제로사용했을 때, 반응은 60℃에서 30초 내에 빠르게 완료되었으며, 트라이펩타이드보다 긴 펩타이드 서열에도 적용 가능함을 확인했습니다.

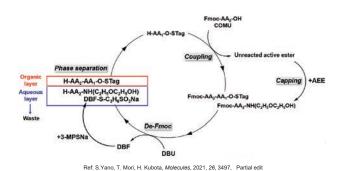
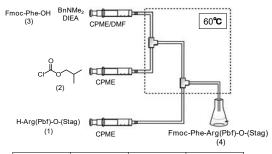



그림4 Stag-PS 방법

Reaction Time (min)	S.M. residue (Area%)	Target Material (Area%)	Byproduct (Area%)
0.5	0.18	99.58	0.24
1.5	0.18	99.57	0.25
5.0	0.13	99.22	0.65

그림5 혼합 탄산 무수물을 사용하여 플로우 아미드화

플로우(Flow) Fmoc 탈보호 및 프로세스 통합에 대한 조사

Fmoc 탈보호 반응에 대해서도 연구를 진행했습니다. 그림 6에 나타난 바와 같이, 앞서 언급된 화합물(4)에 대해 DBU (1,8-diazabicyclo[5.4.0]undec-7-ene)을 사용해 Fmoc 탈보호를 수행한 결과, 60℃에서 10초 만에 탈보호가 완료되어 화합물(7)을 얻었습니다. 이 단계에서, 이전 단계에서 남아있을 수 있는 활성화된 화합물을 포획하기 위해 화합물 (5) (2(-2-Aminoethylamino)Ethanol)을 캡핑제(Capping Agent)로 추가했으며, Fmoc 탈보호 과정에서

생성된 디벤조풀벤(Dibenzofulvene)을 포획하기 위해 화합물 (6) (Sodium3-Mercapto-1-Propanesulfonate)을 추가했습니다. 아미드화와 Fmoc 탈보호 단계가 각각 연속 공정으로 전환 가능했기 때문에, 이 두 단계를 연결했습니다(그림 7). STag로 지지된 화합물(8)로부터 시작하여, 아미드화와 Fmoc 탈보호 반응을 통해 화합물(10)을 얻었습니다. 아미드화 반응은 60℃에서 30초 동안 수행되었고, Fmoc 탈보호 반응은 60℃에서 10초 동안 수행되었습니다.

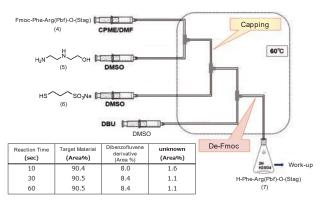


그림6 De-Fmoc 프로세스

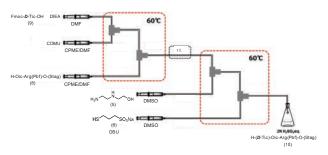


그림7 아미드화 - 탈 Fmoc 프로세스

반응 워크업

다음으로, 워크업 공정을 통합했습니다. 일반적으로 워크업 공정에서는 산-염기 추출(Mcid-base Extraction)과 염수(Brine) 세척이 수행되지만, 이를 연속적으로 수행하기 위한 액상 분리(liquid-liquid separation) 방법으로 멤브레인 분리와 믹서-세틀러 분리를 조사했습니다.

멤브레인 분리의 경우, 먼저 반응 용매와 물의 혼합물을 분리하는 실험을 진행했습니다. 친수성 및 소수성 폴리테트라플루오로에틸렌(PTFE) 멤브레인이 모두 문제없이 혼합물을 분리할 수 있음을 확인했습니다. 그러나 실제 반응 용액을 이용한 실험에서는 STag의 높은 소수성(Lipophilicity) 때문에 충분한 분리가 이루어지지 않았습니다. 이 결과를 바탕으로, 워크업 공정을 위해 믹서-세틀러(Mixer-Settler) 방법을 채택했습니다(그림 8). 유기층과 수층 간의 계면을 감지하기 위해, 일부 유화(Emulsion) 및 계면 변동을 처리할 수 있고 구현이 용이한 근적외선(NIR) 카메라를 선택했습니다. 분리 후 용액은다음 공정으로 전달되기 전에 버퍼 탱크에 일시적으로 저장됩니다.이 방법에서는 분리 과정에서 유기층의 부피가 감소하기 때문에 농축 단계가 필요하지 않아, 농축 공정을 설정하지 않았습니다.

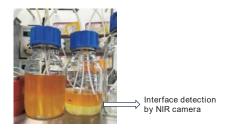


그림8 믹서-세틀러

모든 프로세스 통합

합성부터 후처리 완료까지의 각 공정이 통합 가능했기 때문에, 이 공정을 시제품 제작을 위해 통합했습니다⁽¹²⁾. 우리는 합성, 추출, 그리고 버퍼 탱크 공정을 연결하고, 제조 과정에서 각 흐름 경로의 유량, 온도, 압력을 제어, 모니터링 및 제어 프로토콜 실행이 가능하도록 제어 시스템을 도입했습니다. 이 제어 시스템은 그래픽 사용자 인터페이스(GUI)를 통해 운영됩니다. 제어 장치 하드웨어로는 Raspberry Pi를 메인 컨트롤러로 사용했으며, 각 장치와의 인터페이스를 위한 서브유닛을 별도로 설계 및 개발했습니다. 각 장치로부터의 신호는 서브유닛을 통해 메인 컨트롤러로 집계되며, GUI를 통해각 장치의 값과 상태를 PC 화면에 표시하도록 했습니다(그림 9).

그림9 Control configuration & GUI

이카티반트(Icatibant) 합성

구축된 시제품(그림 10)을 사용하여, 10개의 잔기로 이루어진 펩타이드 Icatibant를 모델로 한 합성 실험을 진행했습니다. 반복 기전의 일부는 수동으로 수행했지만, 연속 흐름 공정을 워크업 공정을 포함해 10회의 반복을 통해 전장 보호된(Full-length Protected) Icatibant의 합성 반응을 완료할 수 있었습니다. 얻어진 전장 보호된 Icatibant의 순도는 92.6 area%로 확인되었으며, 이는 배치(Batch) 방식과 동등한 순도로 합성이 가능함을 입증했습니다(그림 11).

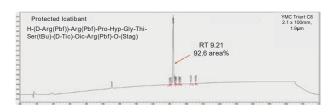


그림11 보호 이카티반트의 HPLC 차트

분광 분석

분광 분석법은 비파괴적 분석을 가능하게 하므로, 공정 분석 기술(PAT)의 모니터링 도구로써 연속 생산에 매우 유용합니다. 이 방법들은 실시간으로 이상을 감지하고, 피드포워드(Feedforward) 및 피드백(Feedback)을 통한 능동적인 공정 제어를 수행하여 "제어 상태(State of Control)"를 유지하는 데 기여합니다(ICH Q10). 대표적인 방법으로는 근적외선(NIR) 분광법, 중적외선(MIR) 분광법, 테라헤르츠(THz) 분광법, 그리고 라만(Raman) 분광법이 있으며, 이들 모두 비파괴적, 비접촉식, 신속한 측정을 가능하게 합니다. 본 연구에서는 흐름 상태에서의 펩타이드 합성 공정 제어를 위해 이러한 분광법을 조사했습니다. 특히, 반응하지 않은 출발 물질이 이후 공정에서 불순물로 남을 가능성이 높기 때문에, 흐름 아미드화(Flow Amidation)이후 출발 물질을 예측하고 정량화할 수 있는 분광 방법을 선택하는 것이 필수적이었습니다. 이 선택 과정에서 다음 기준을 고려했습니다:

- (1) 출발 아미노산의 잔존 NH2 또는 NH 그룹을 모니터링할 수 있는 능력
- (2) 다량의 용매 분자 존재하에서도 측정이 가능한지 여부
- (3) 장비 설치 시 광섬유(Optical Fiber) 취급의 용이성

이러한 기준을 포함한 여러 요소를 종합적으로 검토한 결과, 근 적외선(NIR)을 우선적으로 활용하여 연구를 진행했습니다.

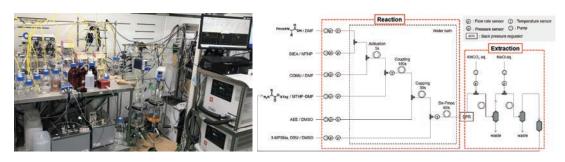


그림10 프로토타입 개요 및 계측 다이어그램

NIR 측정

그 결과, 아미드화가 진행됨에 따라 아민(Amine) 조합밴드 영역에서 약 4940 cm⁻¹에 위치한 흡수 피크와 오버톤(Overtones) 영역에서 약 6550 cm⁻¹에 위치한 흡수 피크가 감소하거나 사라짐을 확인할수 있었습니다 (-NH2 to -NHCO or -NH to -NCO) (그림 12; 반응이 진행됨에 따라 차트가 파란색에서 빨간색으로 변화).

조합밴드 영역에서의 몰 흡수 계수는 상대적으로 컸기 때문에 S/N 비율(Signal-to-Noise Ratio)이 유리했으며, 이는 모니터링에 적합한 피크로 판단되었습니다.

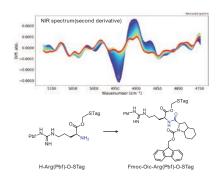


그림12 1차 아민의 소멸에 의한 스펙트럼 변화

부분 최소 제곱(PLS) 회귀 모델 생성

우리는 얻어진 NIR 데이터와 고성능 액체 크로마토그래피 (HPLC)를 사용하여 측정된 잔여 출발 물질 비율을 기반으로 부분 최소 제곱(PLS) 회귀 모델을 생성했습니다. NIR 데이터는 조합밴드 영역에서 흡수도가 더 크고 안정적인 스펙트럼을 사용하였으며, 목표변수는 각 반응 시간에서의 피크 면적 비율(%)을 설정했습니다. 이비율은 반응 시작 시 출발 물질의 피크 면적과 비교하여 HPLC로 측정한 값입니다. 그림 13은 두 개의 잔기를 합성하는 동안 잔여 출발물질 비율에 대한 PLS 회귀선을 보여줍니다. 평균 제곱 오차(MSE)는충분히 작았고, 상관 계수는 0.99 이상으로 나타나, 이 방법을 잔여출발물질 비율의 실시간 모니터링에 적용할 수 있는 가능성을 시사합니다.

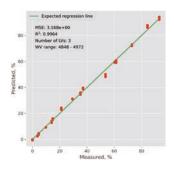


그림13 PLS regression model for raw material residual rate

결론

우리는 펩타이드 합성에 연속 생산 기술을 적용한 시제품 장치를 개발하였으며, 연속 흐름 방식을 이용한 펩타이드 생산 가능성을 입증하였습니다. 또한, 인라인 근적외선(NIR) 분광법을 활용한 실시간 공정 제어 기술에 대한 개념 증명을 수행하였습니다. 향후 도전 과제는 장기간 운전 중 제조 공정의 안정성 입증, 완전 자동화 실현, 분광 분석의 정량 정확도 개선, 그리고 고객의 활성 의약품 성분(API)생산 가치를 확인하면서 생산 규모 구현 가능성을 추가적으로 조사하는 것 입니다.

감사의 말

실험 작업은 펩티스터 (Peptister Co., Ltd.)와 협력하여 수행했습니다.

참고문헌

- S. L. Lee, T. F. O'Connor, et al., "Modernizing Pharmaceutical Manufacturing: from Batch to Continuous Production," J Pharm Innov, Vol. 10, 2015, pp. 191-199
- (2) Pharmaceutical Evaluation Division, Pharmaceutical Safety and Environmental Health Bureau, Ministry of Health, Labour and Welfare, "Guideline for Continuous Manufacturing of Drug Substances and Drug Products (PSEHB/PED Notification No. 0531-1)," 2023 (in Japanese)
- (3) GMP Committee for Drug Substances, Japan PDA Society of Pharmaceutical Science and Technology, "Accelerating the Implementation of Continuous Manufacturing: Enforcement of ICH Q13," Pharm Tech Japan, Vol. 39, No. 5, 2023, pp. 144-167 (in Japanese)
- (4) J. Tsu r u moto, K. I ketani, et al., "Prog ress i n Continuous Manufacturing for Drug Products, Small Molecule Drug Substances, and Biopharmaceuticals: iFactory for Pharmaceutical Manufacturing Based on the Interconnection of Reconfigurable Modular Unit Operations," Pharmaceutical and Medical Device Regulatory Science, Vol. 53, No. 3, 2022, pp. 183-191 (in Japanese)
- (5) U.S. Food & Drug Administration, "ANDAs for Certain Highly Purified Synthetic Peptide Drug Products That Refer to Listed Drugs of rDNA Origin Guidance for Industry," FDA-2017-D-5767, 2021
- (6) V. D'Aloisio, P. Dognini, et al., "PepTherDia: Database and Structural Composition Analysis of Approved Peptide Therapeutics and Diagnostics," Drug Discovery Today, Vol. 26, No. 6, 2021, pp. 1409-1419
- (7) A. Isidro-Llobet, M. N. Kenworthy, et al., "Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production," J. Org. Chem., Vol. 84, No. 8, 2019, pp. 4615-4628
- (8) A. Sharma, A. Kumar, et al., "Liquid-Phase Peptide Synthesis (LPPS): A Third Wave for the Preparation of Peptides," Chemical Reviews, Vol. 122, No. 16, 2022, pp. 13516-13546
- (9) M. Baumann, T. S. Moody, et al., "A Perspective on Continuous Flow Chemistry in the Pharmaceutical Industry," Org. Process Res. Dev., Vol. 24, No. 10, 2020, pp. 1802-1813
- (10) S. Yano, T. Mori, et al., "Silylated Tag-Assisted Peptide Synthesis: Continuous One-Pot Elongation for the Production of Difficult Peptides under Environmentally Friendly Conditions," Molecules, Vol. 26, No. 12, 2021, p. 3497
- (11) Y. Otake, K. Adachi, et al., "A Liquid-phase Continuous-flow Peptide Synthesizer for Preparing C-terminal Free Peptides," React. Chem. Eng., Vol. 8, 2023, pp. 863-870
- (12) N. Iwanaga, Y. Kotake, et al., "Liquid-phase Peptide Synthesis Using a Flow Synthesis System," Proceedings of the Summer Symposium of the Society of Process Chemistry, Japan, 2023, pp. 200-201 (in Japanese)
- * STag and STag-PS are registered trademarks or trademarks of Sekisui Medical Co., Ltd. in Japan and other countries.
- * All other company names, organization names, product names, service names, and logos that appear in this paper are either registered trademarks